Data after March 25 and scenarios after May 3 (end of lockdown)

Map of the projected real GDP growth rate in 2020 of counties in the International Monetary Fund’s World Economic Outlook (April 2020).

$\text{GDP growth rate in 2020 (in percent)}$:

- $>10.0\%$
- $8.0–9.9\%$
- $6.0–7.9\%$
- $4.0–6.9\%$
- $2.0–3.9\%$
- $0.1–1.9\%$
- 0.0% or no information available
- $-0.1–1.9\%$
- $-2.0–3.9\%$
- $-4.0–6.9\%$
- $-6.0–7.9\%$
- $-8.0–9.9\%$
- $<-10.0\%$
Update of model (data as of May 1)

Figure 1: Comparative analysis of data and model results for hospitalizations in 107 Italian provinces as of May 1, 2020. The maps show: a) a sketch of the Italian regions; b, c) the prevalence of cumulative hospitalizations in each Italian province up to May 1, reconstructed data (b) and model simulations (c); d) Ratio between the estimated transmission rate on May 1, and the one estimated at the beginning of the outbreak (February 24).

medRxiv preprint doi: https://doi.org/10.1101/2020.04.30.20083568; this version posted May 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Model update and future scenarios

- The spatial model parameters are updated.
- Further decrease of transmission rate wrt March 25 down to 30%-40% of initial transmission (depending on region).
- The blue line is the baseline (going on with lockdown).
- The green and purple solid lines represent scenarios for a release of containment measures determining an effective increase in the overall transmission rates of respectively 20% and 40%.
- Mobility increase can be effectively mitigated by PPE (Personal Protective Equipment).
Protective equipment

Philip Anfinrud, Ph.D.
Valentyn Stadnytskyi, Ph.D.
National Institutes of Health
Bethesda, MD

Christina E. Bax, B.A.
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, PA

Adriaan Bax, Ph.D.
National Institutes of Health
Bethesda, MD
Sensitivity analysis for the prevalence of susceptible (to fraction of asymptomatics)

Definition of symptomatic cases not well established

Baseline scenario with 3 fractions of symptomatic cases
• 50% (Vo’ Euganeo study) blue
• 25% green (likely)
• 10% red
The advantage of early and wide testing

Reported confirmed cases and deaths (14-day rolling numbers) for countries that acted earlier and tested more widely (Singapore and Taiwan, which have never reached ten deaths within any two-week period, are outside the graph’s range). For some of them, geographical insularity may have also helped slow the spread. Early large-scale serology studies suggest that the actual number of infections is 10–20 times the number of reported cases. After turning a corner, bringing cases and deaths down takes many more weeks that it took for cases and deaths to reach a peak. Infection fatality rates, which depend on demographics, cultural factors, the capacity and quality of healthcare systems, public health measures and mitigation measures, are estimated to be 0.5–1% — a multiple of that for seasonal flu in the United States (0.1%). Data updated 11 May 2020. Individual data points can be affected by reporting errors and delays, and by location-specific definitions (and changes to them) for confirmed cases and deaths. Data sources: European Center for Disease Control and Prevention (cases and deaths); Our World in Data (tests). Additional updated graphs are available.

[Diagram showing confirmed cases and deaths over time]

Nature Biomedical Engineering
volume 4, pages 479–480 (2020)

Our estimate of infection fatality rate (IFR) in Italy = 2% with 25% fraction of symptomatics
Future scenarios: testing and tracing

Goal: trace and isolate exposed and pre-symptomatic cases so as to stay on the baseline epidemiological scenario
- **Green** solid lines: individuals to be isolated daily
- Dashed black lines indicate the estimated number of E and P individuals that can be isolated by **tracing all the infections** generated by the new daily symptomatic cases C (via swab testing)
Conclusions

• Only a spatial model including mobility can effectively project the epidemic trajectories
• In this way it is possible to estimate the demand for critical care facilities in our hospitals
• There are many shortcomings in the model:
 • age structure
 • social contact structure (household, school, work, etc.)
 • insufficient spatial granularity for some compartments (lack of available data)
• Although data were made available in relatively short time at the beginning, there has been an insufficient response to the request of the scientific community that data be widely available