ICUBAM - Modeling with SIR type models

Jean-Pierre Nadal
CNRS & EHESS
Laboratoire de Physique de l’ENS
(LPENS, UMR 8023 CNRS - ENS – SU – Université de Paris)
Ecole Normale Supérieure (ENS)
and
Centre d’Analyse et de Mathématique Sociales
(CAMS, UMR 8557 CNRS - EHESS)
Ecole des Hautes Etudes en Sciences Sociales (EHESS)

work done with Laurent Bonnasse-Gahot (CAMS, EHESS), and
François Husson (IRMAR), Julie Josse (Inria, Ecole Polytechnique), Antoine Kimmoun (CHRU Nancy)
and in interaction with all the ICUBAM team.
ICUBAM - Modeling with SIR type models

• ongoing project

• on unfortunately ongoing data...
Basic **SIR model**

compartment model

flow chart:

- **S**: Susceptible
- **I**: Infected
- **R**: Removed (recovered or deceased)

Flow arrows:
- β: Contact rate from S to I
- ω: Natural recovery rate from I to R
Grand Est region

Simple SIR model
National public data
(Santé Publique France)

Blue: current number of hospitalized patients
Gray: cumulative number of deaths
Green: cumulative number of returned to home
underlying dynamics

DATA
Ile-de-France

Public data
(Santé publique France)

Simple SIR model
SEIR type model calibrated on ICUBAM data (alone)

ICUBAM data:
for each participating Intensive Care Unit (ICU) - in the Grand Est région, almost all ICUs -, for each day, since March 18 for most ICUs

• Current number of patients in the ICU
• Cumulative number of deceased cases
• Cumulative number of discharged beds (patients sent back to ‘normal’ hospital bed, then for most back home)
Public official data (Santé Publique France) vs. ICUBAM data

Data collecting: Different modalities
Intensive care: Not exactly the same category (only reanimation beds for ICUBAM)
SEIR type model on ICUBAM data

\[
\begin{align*}
\Delta S(t) &= -\beta \frac{I(t)S(t)}{N} \\
\Delta I(t) &= \beta \frac{I(t)S(t)}{N} - \omega_{ic}I(t) - \omega_{ir}I(t) \\
\Delta C(t) &= \omega_{ic}I(t) - \omega_{cx}C(t) \\
\Delta X(t) &= \omega_{cx}C(t)
\end{align*}
\]
SEIR model

SIR + Incubation compartment (Exposed state)

Underlying dynamics

DATA

X (R or D)
\[\Delta S(t) = -\beta \frac{E_t S_t}{N}; \]
\[\Delta E(t) = +\beta \frac{E_t S_t}{N} - \omega_{ei} E_t \]
\[\Delta I(t) = \omega_{ei} E_t - \omega_{ic} I_t - \omega_{ir} I_t \]
\[\Delta C_1(t) = \omega_{ic} I_t - \omega_{cc} C_{1t} \]
\[\Delta C_2(t) = \omega_{cc} C_{1t} - \omega_{cx} C_{2t} \]
\[\Delta X(t) = \omega_{cx} C_{2t} \]

Large distribution of time spent in ICU
Here: extension of time distribution by having an additional compartment within the ICU one

Underlying dynamics

\(X \) (R or D)
\(\omega_x \)
\(\omega_r \)
\(\omega_{icu} \)
\(\omega_{12} \)

DATA

ICU_2
ICU_1
Calibration of the model on each Département
Optimization over:
{ β; rates (ω...); initial conditions }
Fit on data ≤ April 27
Prediction for the two following days
Colored zones: 95% credible regions
Fit on data ≤ April 27
Prediction for the two following days

Colored zones: 95% credible regions
ICUBAM Modeling - under progress

• Back to the future
 Prediction that could have been made at earlier stages (before the peaks)

• Scenarios after the end of the lockdown

• Model: Coupling several Départements
ICUBAM project

- Laurent Bonnasse-Gahot EHESS
- Maxime Dénès Inria
- Gabriel Dulac-Arnold Google Research
- Sertan Girgin Google Research
- François Husson CNRS, IRMAR
- Valentin Iovene Inria
- Julie Josse Inria & École Polytechnique
- Antoine Kimmoun CHRU de Nancy
- François Landes Université Paris-Saclay
- Jean-Pierre Nadal CNRS & EHESS
- Romain Primet Inria
- Frederico Quintao Google Research
- Pierre Guillaume Raverdy Inria
- Vincent Rouvreau Inria
- Olivier Teboul Google Research
- Roman Yurchak Inria

doi: 10.1101/2020.05.18.20091264